

Галакти́ческий це́нтр — сравнительно небольшая область в центре нашей Галактики, радиус которой составляет около 1000 парсек и свойства которой резко отличаются от свойств других её частей. Образно говоря, галактический центр — это космическая «лаборатория», в которой и сейчас происходят процессы звёздообразования и в которой расположено ядро, когда-то давшее начало конденсации нашей звёздной системы.
Галактический центр находится на расстоянии 8,5 кпк от нашей Солнечной системы, в направлении созвездия Стрельца. В галактической плоскости сосредоточено большое количество межзвёздной пыли, благодаря которой свет, идущий от галактического центра, ослабляется на 30 звёздных величин, то есть в 1012 раз. Поэтому центр невидим в оптическом диапазоне — невооружённым глазом и при помощи оптических телескопов. Галактический центр наблюдается в радиодиапазоне, а также в диапазонах инфракрасных, рентгеновских и гамма-лучей. Первое изображение ядра Галактики было получено в конце 1940-х гг. А. А. Калиняком, В. И. Красовским и В. Б. Никоновым в инфракрасном диапазоне спектра[1][2].
Экваториальные координаты Галактического центра (эпоха J2000.0):
Прямое восхождение : 17ч 45м 40.04с
Склонение: -29° 00′ 28.1″
http://www.youtube.com/watch?feature=player_embedded&v=x8h0UGJNIDc
http://www.youtube.com/watch?NR=1&v=AOQvT442VPU&feature=end...
http://www.youtube.com/watch?v=UPrjrsyEA7w&feature=related
http://www.youtube.com/watch?v=7D3VD_cNZ3I&feature=related
Почти каждый любитель астрономии знает, что галактики по своему внешнему виду делятся на разные типы: спиральные, эллиптические и неправильные. Но в середине ХХ века был введен еще один метод различия галактик - по количеству и качеству выделяемой ими энергии, вследствие чего теперь все галактики можно отнести либо к активным, либо к спокойным. Почему же галактики бывают активными и что это означает?
Определение
Активные галактики – одни из самых интересных и загадочных объектов нашей Вселенной. Основное отличие от обычных галактик заключается в настолько большом количестве энергии, вырабатываемой в ядрах таких галактик, что его невозможно объяснить стандартными источниками энергии – звездным населением. Ядра активных галактик – это объекты с самой высокой светимостью во Вселенной, обладающие переменной светимостью в широчайшем диапазоне длин волн: от гамма-излучения до радиоволн.
В настоящее время наиболее общепризнанной является гипотеза о наличии в центре активной галактики сверхмассивной черной дыры, в таком случае большая часть энергии может выделяться при падении на них окружающего вещества (процесс аккреции).
Активные ядра галактик — ядра галактик, наблюдаемые процессы в которых нельзя объяснить свойствами находящихся в них звезд и газово-пылевых комплексов.
Галактические ядра считают имеющими признаки активности если[1]:
Активная галактика — галактика с активным ядром. Такие галактики подразделяются на: сейфертовские, радиогалактики,лацертиды и квазары. Есть мнение, что в центре находится чёрная дыра, которая и является причиной повышенной интенсивности излучения от ядра, особенно в рентгеновском диапазоне. Из ядра таких галактик обычно вырывается релятивистская струя (джет). Отличительной чертой многих активных галактик является переменное (от нескольких дней до нескольких часов) рентгеновское излучение.
На данный момент доподлинно неизвестно, что является причиной необычного поведения активных ядер. Основные версии:
В стандартной модели АЯГ аккреционный диск (АД) формирует вещество, находящееся вблизи центральной чёрной дыры (ЧД). Трение частиц заставляет материю двигаться к внутренним слоям диска, а угловой момент вращения выталкивает её наружу, что приводит к нагреву диска. Теоретически спектр аккреционного диска вокруг сверхмассивной ЧД должен иметь максимумы в оптическом и ультрафиолетовом диапазонах. А корона из горячего материала, приподнятого над АД может вызывать возникновение рентгеновских фотонов за счёт эффекта обратного комптоновского рассеяния. Мощное излучение АД возбуждает холодные частицы межзвёздной среды, что обуславливает эмиссионные линии в спектре. Большая часть энергии, излучаемой непосредственно АЯГ, может поглощаться и переизлучаться в ИК (и других диапазонах) окружающей АЯГ пылью и газом.
Общепринятая модель АЯГ состоит из вращающейся массивной центральной чёрной дыры и окружающего её аккреционного газового диска, являющегося источником мощного ионизирующего излучения. Эта модель качественно объясняет наблюдаемую корреляцию потоков в непрерывном спектре и широких водородных линиях, а также существование запаздывания между ними. Таким образом, проблема АЯГ сводится к двум основным вопросам: каков механизм излучения непрерывного спектра и каким именно образом это излучение перерабатывается в излучение других спектральных диапазонов. Наблюдаемое в КрАО[2] и зарубежных обсерваториях запаздывание длинноволнового излучения континуума по отношению к коротковолновому может свидетельствовать о том, что свечение большинства АЯГ обусловлено сильным трением и разогревом газа в аккреционном диске. Но надёжного доказательства этому до сих пор нет. С другой стороны, свечение особой группы АЯГ — объектов типа BL Lacertae, может быть обусловлено, как свидетельствуют наблюдения, выполненные крымскими и финскими астрономами, исключительно синхротронным излучением релятивистского газового джета, направленного вдоль оси вращения диска по направлению к наблюдателю. Многолетний спектральный мониторинг АЯГ, проводимый некоторыми зарубежными обсерваториями, а также КрАО (с конца 1980-х годов), совместно с развитием метода реверберационного анализа позволил предположить, что излучение широких эмиссионных линий водорода возникает в газовых облаках, двигающихся покеплеровским орбитам примерно в одной плоскости и образующих внешний диск. Но общего согласия среди специалистов по этому поводу пока нет. В последнее время в мировых исследованиях особое внимание уделяется изучению взаимосвязи между излучением АЯГ в рентгеновском и оптическом диапазонах. Такая работа проводится и в КрАО. Согласно данным крымских астрономов, источник рентгеновского излучения должен находиться в центре над диском, переизлучающим эту энергию в видимой области спектра. Результаты этих и других исследований опубликованы в книге, содержащей материалы проведённой в КрАО конференции «Переменность АЯГ от рентгена до радио» (Astronomical Society of the Pacific Conference Series, ASPCS, vol.360). Несмотря на определённый прогресс, достигнутый в изучении АЯГ, многие проблемы и задачи остаются нерешёнными, например, такие как объяснение переменности профилей широких водородных линий, природа их «двугорбости» в некоторых АЯГ, кинематика и динамика газа в области диска, повышение точности определения масс центральных чёрных дыр и т. д.
История открытия
Первую активную галактику, М77 (NGC1068) в Ките, открыл еще француз Пьер Мешен в 1780м году. Но признаки ее активности были замечены только в 1908м году сотрудником Ликкской обсерватории Эдвардом Фэтом в процессе изучения ее спектра. И лишь в 1926м году знаменитый ученый Эдвин Хаббл обнаружил еще два подобных объекта NGC4051 и NGC4151. К 1943му году таких галактик было известно уже 12 и Карл Сейферт выделил их в особый класс, подробно описав отличия между обычными и активными галактиками и разделив активные галактики на два типа.
В 1946м году была открыта первая галактика, активная в радиодиапазоне – «радиогалактика Лебедь А», а в 1959м году открыт первый квазизвездный радиоисточник 3С48 («квазар»). Несколько лет после открытия квазары не удавалось отличить от звезд в оптическом диапазоне из-за сверхмалых угловых размеров и существовало даже название "радиозвезды", которое не прижилось.
В 1963м году голландский астроном Мартин Шмидт доказал, что линии в спектрах квазаров сильно смещены в красную сторону. Дальнейшие исследования показали, что природа этого красного смещения космологическая. Таким образом, впервые выяснилось, что расстояния до квазаров огромные, внегалактические, соответственно энергии они излучают тоже гигантские, не сравнимые с излучением звезд.
Этот факт поставил астрономов в тупик - вполне звездообразные (в основном) объекты излучают во многие миллиарды раз большее количество энергии, чем обычные звезды. Почему? Изучение квазаров постепенно набирало обороты...
В 1965м году Сендидж показал, что существуют объекты, идентичные квазарам, но не проявляющие себя в радиодиапазоне, в результате квазары были разделены на «радиотихие» и «радиогромкие». Радиотихие квазары получили название "квазаги", которое не пользуется популярностью. Причем сегодня считается что обычных, "громких" квазаров лишь 10% от общего количества, а остальные 90% относятся к "тихим".
В 1968м году Мартен Шмидт идентифицировал объект BL Ящерицы (BL Lac) как переменный радиоисточник в центре элиптической галактики. Все подобные объекты получили название «блазары» или "лацертиды". Блазары отличаются от других активных галактик отсутствием эмиссионных линий в спектре и тем, что эти объекты не бывают радиотихими. Излучение лацертид сильно поляризовано, что указывает на наличие мощного магнитного поля.
В 1990е года наблюдения при помощи космического телескопа Хаббл показали, что квазары чаще всего находятся в центрах гигантских эллиптических галактик. Таким образом была окончательна установлена родственность сейфертов, радиогалактик, квазаров и блазаров: в основном, квазар это время «юности» сейфертовской или радиогалактики.
Поскольку активность проявляют именно ядра всех вышеперечисленных типов галактик, то в последнее время все чаще употребляется собирательный термин "активные ядра галактик" (АЯГ).
В 1998м году заподозрено сущестование квазара в центре галактики Mrk231, который находится в 4 раза ближе (всего 500млн св. лет) знаменитого квазара 3С273.
Интересно, что многие активные ядра галактик были открыты еще до установления их внегалактической природы и занесены в каталоги переменных звезд (например, переменная звезда BW Tau, оказавшаяся сейфертовской галактикой 3С120).
Признаки активности ядер галактик:
1. Спектр электромагнитного излучения активной галактики занимает более широкий диапазон, чем спектры обычных галактик: от радио-диапазона до жёсткого гамма-излучения.
2. Наблюдается быстрая переменность блеска — изменение «мощности» источника излучения с периодом от 10 минут в рентгеновском диапазоне и до примерно 10 лет в оптическом и радио диапазонах.
3. Доказано перемещение больших масс сильно разогретого газа с огромными скоростями в разных направлениях.
4. Видимые морфологические признаки (в частности, выбросы ("джеты") и "горячие пятна").
5. Общая мощность излучения значительно превышает мощность обычных галактик, причем основное количество энергии выделяется из компактного центра.
Исследования активных ядер галактик
Первый в мире спектрофотометрический мониторинг ряда избранных активных ядер галактик был начат в КрАО в 1970х годах. Вскоре выяснилось, что газ излучение которого создает широкие спектральные линии, имеет высокую концентрацию n>106 см-3 и большие скорости (≥5000 км/сек). Все последующие исследования спектров АЯГ сводились к выяснению структуры и природы этого газа.
В настоящее время мониторинг активных ядер галактик ведут несколько наземных обсерваторий (в том числе и КрАО) при поддержке космических телескопов. В частности, космические наблюдения помогают подробнее изучить поведение этих галактик в рентгеновском и гамма-диапазоне, которые сильно поглощаются земной атмосферой.
Одна из наблюдающихся в КрАО галактик с активным ядром NGC 6814. Снимок получен на телескопе АЗТ-8.
Особое внимание сейчас уделяется обнаруженной взаимосвязи между рентгеновским и оптическим излучением. Наблюдения показывают, что у большинства активных ядер галактик переменность оптического излучения является следствием переменности рентгеновкого.
Важным типом исследований являются космические наблюдения в оптическом диапазоне, позволяющие измерить скорости движения отдельных звезд и их расстояние относительно центральной черной дыры. Зная эти данные, можно вычислить массу черной дыры по уточненному третьему закону Кеплера и сравнить ее с массой, посчитанной по методу эхо-картирования (описание метода см. ниже).
Источник энергии активных галактик
Наиболее убедительная гипотеза описывает ядро активной галактики следующим образом: в центре находится сверхмассивная черная дыра, на которую с огромными скоростями падает разогретый до высоких температур газ. При этом выделяется огромное количество энергии, главным образом в рентгеновском и гамма-диапазоне. Эта энергия разогревает окружающий газ до температур в миллионы и миллиарды градусов, заставляя его излучать разные спектральные линии Наблюдаемые в спектрах активных галактик эмисионные линии рождаются именно в этой области, а значит, изучая эти линии, можно говорить о свойствах материи, близкой к центральной черной дыре и даже пытаться изучить саму черную дыру.
Гигантская светимость активных ядер галактик говорит о наличии в центральной области очень большой массы, поскольку для компенсации силы давления света на окружающий газ необходимо сильное гравитационное поле. Не будь этого поля, окружающее вещество быстро разлетелось бы в пространство из-за высочайшего давления света. А, поскольку сила гравитации объекта обратно пропорциональна квадрату его размера, значит он должен быть очень маленьким. Что подтверждется быстрыми колебаниями яркости в рентгеновском диапазоне. Этим критериям лучше всего соответствует именно сверхмассивная черная дыра.
В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с гравитационным радиусом. Но разрешающая способность телескопов недостаточна для того, чтобы различать области пространства размером порядка гравитационного радиуса чёрной дыры. Поэтому в идентификации центральных объектов ядер галактик как чёрных дыр есть некоторая степень допущения. Считается, что установленный верхний предел размеров этих объектов слишко мал, чтобы рассматривать их как скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы. К тому же, вероятность нахождения групы таких объектов (необходимой численностью в тысячи штук) в небольшой области пространства ничтожна, а также отсутствуют гипотезы, описывающие рождение таких групп. В результате единственным достоверным претендентом на место источника энергии АЯГ на сегодняшний день являются сверхмассивные черные дыры.
Аккреция газа на черную дыру
В 1964м году астрофизики Яков Зельдович и Игорь Новиков и, независимо, Эдвин Залпетер, первыми предположили, что наблюдаемое синхротронное излучение активных ядер возникает благодаря падению (аккреции) вещества в виде плазмы на центральный объект - черную дыру. Аккреция бывает двух видов: дисковой (когда падающее вещество образует диск) и сферической (когда падающее вещество сравнительно равномерно заполняет окрестности черной дыры).
В первом случае вещество диска двигается по спиральным траекториям и в результате взаимодействия с магнитным полем оно испускает т.н. синхротронное излучение. Эта гипотеза полностью подтвердилась. Правда, природа магнитного поля остается неизученной и по сей день. Во втором случае вещество падает к центру не вращаясь. Считается, что в большинстве АЯГ существуют оба типа аккреции, (плотный диск и разреженная корона) но основную часть энергии выделяет именно первый тип.
Выбросы из АЯГ - джеты
Джет (или релятивистская струя) - поток плазмы, которая образуются в результате аккреции вещества на черную дыру. Строгой математической модели данных объектов, не существует, и многие детали их образования остаются загадкой. В частности, считается, что в формировании джетов принимает участие не только гравитация, а и магнитное поле. Каким же образом? Это еще предстоит выяснить.
Часто у объекта наблюдаются два джета, направленных в противоположные стороны. Видимо, происхождение джетов связано с центральным объектом, обладающим осевым вращением. Наблюдения свидетельствуют, что джеты не являются прерогативой только лишь сверхмассивных черных дыр - они могу образовываться и у черных дыр звездной массы, а также нейтронных звезд. Возможно, всегда образуется именно два джета, просто один иногда хуже виден.
Одна из гипотез образования джетов гласит: центральный объект обладает ретроградным (обратным) движением, по отношению к аккреационному диску. Гравитация вращающейся дыры "расталкивает" внутренние слои материи аккреционного диска. В результате создается "провал" между диском и дырой, который позволяет магнитному полю (создаваемому вращением заряженной дыры) собираться в мощные линии, вдоль которых и выбрасываются джеты.
При некоторых условиях, может создаться впечатление, что джеты двигаются со сверхсветовыми скоростями. Это чисто наблюдательный эффект, первое обоснование которого было дано еще Мартином Рисом в 1966м году.
Высочайшая протяженность джетов, достигающая в случае с АЯГ десятков и сотен тысяч световых лет, объясняется синхротронным излучением высокоэнергетичных протонов и электронов, ускоренных центральной черной дырой и двигающихся в магнитном поле.
Наиболее известные примеры объектов с джетами: эллиптическая галактика М87, ярчайший квазар 3С 273, радиогалактика 3С 120, радиогалактика Центавр-А (NGC5128).
Изучение структуры АЯГ методом эхо-картирования
Пионерские работы в этом направлении были сделаны в 1972-1973 годах Лютым и Черепащуком. Основной метода является наблюдение за линиями в спектрах АЯГ. Линия Hβ светится в т.н. области широких линий (ОШЛ), а континуум – в более компактной области вблизи черной дыры. Анализ методом кросс-корреляции показывает, что изменения яркости линии Hβ запаздывают по отношению к континууму на несколько дней из-за эффекта светового эха, аналогичного звуковому эхо (используемому, например, в эхолотах).
К примеру, для галактики NGC5548, размер области свечения линии Hβ составляет около 20 световых дней или 500 млрд. км. Этот размер ничтожно мал по сравнению с типичным размером галактик, поэтому структуру ОШЛ нельзя рассмотреть при помощи наземных телескопов и даже из космоса.
Однако “увидеть” ОШЛ можно при помощи математического анализа этого “эхо”. В КрАО ведутся интенсивные работы в этом направлении: для двух АЯГ размер ОШЛ был определен крымскими астрономами впервые, для еще нескольких – независимо, и для еще нескольких – в рамках международной кооперации.
Определение размеров ОШЛ имеет первостепенное значение для определения массы центральной черной дыры, особенно, при отсутствии достоверных данных о звездной динамике вблизи центрального объекта.
Методы определения массы центральной черной дыры
О наличии любой черной дыры можно судить по динамике окружающего ее вещества. Самые прямые методы определения масс сверхмассивных черных дыр в ядрах галактик основаны на исследовании динамики звезд в области гравитационного влияния черной дыры. Было обнаружено, что массы черных дыр коррелируют с дисперсией скоростей звезд в балдже галактики. В этом случае на первый план выходят космические наблюдения в оптическом диапазоне, позволяющие измерить скорости движения отдельных звезд и их расстояние относительно центральной черной дыры. Зная эти данные, можно легко вычислить массу черной дыры, потому что в области гравитационного доминирования черной дыры орбиты у ближайших звезд являются практически кеплеровыми.
Но для многих АЯГ данные звездной динамики, в основном, неуверенные, так как сильное излучение центрального источника подавляет слабое излучения звезд в окрестности черной дыры. Однако, массу центральной черной дыры можно вычислить исходя из размера области широких линий в АЯГ (которая высчитывается по методу светового эха или эхо-картирования) и типичную скорость движения газа в этой области (которая определяется по ширинам линий в спектре).
Этим способом крымскими астрономами были определены массы более 30 черных дыр в ядрах галактик, которые оказались равными от нескольких миллионов до миллиарда масс Солнца. Астрономы КрАО независимо определили массы нескольких черных дыр. Также удалось выяснить, что АЯГ типа т.н. NLS1 имеют самые высокие (при данной массе черной дыры) темпы аккреции газа, а объекты с широкими двугорбыми профилями линий – самые низкие.
Заключение
Галактики с активными ядрами являются крайне необычными объектами, проявляющими разнообразные и совершенно экстремальные свойства. Возможно, они станут одним из ключиков к пониманию самых ранних этапов развития нашей Вселенной - того времени, когда еще не было ни галактик, ни звезд, а сверхмассивные черные дыры уже могли существовать. Не исключено, что эти объекты стали своеобразными центрами конденсации, вокруг которых постепенно "наросли" галактики.
Сверхмассивные черные дыры, возможно являются одной из причин возникновения загадочных гамма-всплесков - мощнейших взрывов, происходящих на космологических расстояниях от нашей галактики. Эти явления представляют большой интерес, ведь если такая вспышка произойдет в соседней галактике, то дни человечества могут быть сочтены.
Также любопытно, что в последнее время стали появляться передовые работы, показывающие зависимость между массой темного вещества галактики и массой сверхмассивной черной дыры. Предполгается, что темное гало оказывает влияние на развитие черной дыры.
А еще по одной из гипотез с черными дырами связаны так называемые "кротовые норы" - пространственно-временные тоннели, позволяющие за короткое время переместиться на огромное расстояние, проложив тем самым дорогу человечеству к путешествию в невероятно далекие миры. Сейчас это выглядит совершенно нереально, но кто знает, чем обернется изучение черных дыр через несколько десятков лет?
В центре нашей галактики нет чёрной дыры |
Международная команда исследователей обнаружила в центральной части Млечного Пути скрученное кольцо плотного и холодного газа, смешанного с пылью. Кольцо это складывается в знак ∞. Форму данной структуры учёные объяснить пока не в состоянии.
Открытие было сделано при помощи космического телескопаHerschel, способного своим инфракрасным и субмиллиметровым взглядом проникать сквозь пыль, расположенную между центром нашей родной Галактики и Землёй. Так впервые удалось ясно разглядеть огромное газопылевое кольцо, в котором идёт интенсивный процесс звездообразования.
Ранее учёным были известны лишь небольшие и разрозненные фрагменты этой структуры, но только теперь стало ясно, что они складываются в восьмёрку. Вернее, это всё же кольцо, но искривлённое: его части то взмывают выше галактической плоскости, то опускаются ниже неё. А поскольку мы наблюдаем эту ленту с ребра, кажется, что мы видим пропеллер с двумя лопастями.
Как объясняет Лаборатория реактивного движения, плотное кольцо газа находится в центре бара Млечного Пути (вытянутой области, богатой звёздами, которая нередко встречается в центре спиральных галактик). Сам бар находится внутри ещё большего кольца.(http://www.membrana.ru/particle/16454)
Телескоп NASA обнаружил в центре галактики символ бесконечности (ФОТО) |
|||||||||||||||||||
Космический инфракрасный телескоп Herschelобнаружил в центре нашей галактики перекрученное кольцо плотного газа, напоминающее по форме математический символ бесконечности. До сих пор астрономам удавалось увидеть только часть этого кольца, протянувшегося на расстояние 600 световых лет. Наблюдения с помощью Herschel позволили впервые получить его полное изображение, сообщает пресс-служба Лаборатории реактивного движения NASA. "Мы много раз исследовали центр Млечного пути. Но, когда мы изучили снимки высокого разрешения в субмиллиметровом диапазоне, полученные с инфракрасного телескопа, существование этого кольца стало очевидным", - отметил Альберто Норьега-Креспо из Калифорнийского технологического института, один из соавторов исследования, опубликованного в издании Astrophysical Journal Letters. На фотографиях с Herschel хорошо видно кольцо плотного холодного газа, смешанного с пылью, где идут процессы образования новых звезд. Астрономы отмечают, что оно перекручено так, что с нашей точки зрения напоминает символ бесконечности, хотя на самом деле это кольцо. Наблюдения с радиотелескопа Nobeyama в Японии дополнили сведения: оно двигается как единое целое, с одинаковой скоростью относительно галактики, передает РИА "Новости". "Восьмерка" находится в центре галактического бара - перемычки, где соединяются спиральные рукава галактики, которая, в свою очередь, находится внутри большего кольца. В настоящее время процесс формирования этих структур в центрах спиральных галактик детально не исследован. Некоторые теории предполагают, что они возникли под действием гравитации соседних галактик. Авторы исследования отмечают, что центр этого "знака бесконечности" не совпадает с центром галактики, положение которого совпадает с источником рентгеновского и радиоизлучения Стрелец А*, который представляет собой сверхмассивную черную дыру. Инфракрасный телескоп Herschel, созданный Европейским космическим агентством при участии NASA и названной в честь британского астронома Уильяма Гершеля, был запущен на орбиту 14 мая 2009 года. Это крупнейший и самый мощный инфракрасный телескоп, который когда-либо отправляли в космос. Диаметр его зеркала составляет 3,5 метра. Herschel, в частности, обнаружил "зародыш" звезды-гиганта, масса которой уже достигает восемь-десять солнечных, но продолжает расти, а также абсолютно пустую область рядом с облаком NGC 1999 - "дыру", вероятно, пробитую в облаке потоком газа от молодой звезды.
|
Добро пожаловать в
ЭСПАВО (Международная Ассоциация Работников Света)
Регистрация
или Вход
© 2025 Created by ADMIN.
При поддержке
Вы должны быть участником ЭСПАВО (Международная Ассоциация Работников Света), чтобы добавлять комментарии!
Вступить в ЭСПАВО (Международная Ассоциация Работников Света)